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Abstract

The present work deals with the thermal buckling and vibration behavior of multi-layer rectangular viscoelastic

sandwich plates. A decoupled thermo-mechanical analysis is made by using finite element method. An all side clamped

(C–C–C–C) plate under thermal loads is analyzed for thermal buckling, frequency and damping behavior. The

temperature-dependent characteristics of complex shear modulus of viscoelastic core are accounted. The formulation

proposed by Kathua and Cheung [Bending and vibration of multi-layer sandwich beams and plates, International Journal

for Numerical Methods in Engineering 6 (1973) 11–24] has been extended to study the thermal buckling and for predicting

the critical buckling temperature of the multi-layer viscoelastic sandwich plates. The variation of natural frequency and

loss factor with temperature has been studied. A parametric study is conducted to estimate the effect of core thickness and

progressive sandwiching. Several interesting phenomenon like shifting of modes with temperature, decrease of membrane

stiffness with the increase in core thickness and increase in level of sandwiching has been observed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures are heavily used as subcomponents in airplane, space craft and missile structures.
Sandwich structures with viscoelastic cores are particularly useful in suppressing vibration over a wide
frequency range. Khatua and Cheung [1] have presented a displacement-based finite element formulation for
bending and vibration of multi-layer sandwich beams and plates with orthotropic cores. Their formulation is
based on classical laminate theory. Khatua and Cheung [2] applied the finite element method reported in their
earlier work [1] for the stability analysis of multi-layer plates and beams. Chan and Foo [3] developed a finite
strip method for the stability analysis of multi-layer sandwich plates. Alam and Asani [4] derived the
governing equations of motion for vibrations of general multi-layer plate by using variational principle. In
their numerical study the core is assumed to be viscoelastic and the complex modulus approach is used to
model the viscoelastic behavior. Ko and Jackson [5] conducted a combined inplane and shear buckling
analysis of rectangular sandwich panels under different thermal environments using Raleigh–Ritz method. Xia
and Lukasiewicz [6] have studied the effect of temperature on the damping properties of the sandwich
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b half the element length and width,
respectively

[B] strain displacement matrix
[Bg] nonlinear strain displacement matrix
[D] material property matrix
[Fth]

e element thermal load vector
G complex shear modulus
G� real part of shear modulus
hj thickness of the jth core layer
[K]e complex element stiffness matrix
[Kg]

e element geometric stiffness matrix
[KI]

e imaginary part of the complex element
stiffness matrix

[KR]
e real part of the complex element stiffness

matrix
[M]e element mass matrix.
n total number of stiff layers
[N] matrix of shape functions
Nxi;Nyi stress resultants of ith stiff layer in x and

y directions

[P] mass density matrix
ti thickness of the ith stiff layer
ui, vi displacements of stiff layers in x and y

directions, respectively
w; yx; yy vertical displacement and rotations in x

and y directions, respectively
axi; ayi coefficient of thermal expansions of ith

stiff layer in x and y directions respec-
tively

gxzj, gyzj transverse shears in jth core layer
{d}e array of nodal displacements
DT temperature change
{e} array of strains
{e}L vector of nonlinear strains
{e0} free expansion thermal strains
Z material loss factor
Zi modal loss factor
l buckling parameter
[s0]

e array of element initial stresses
{fi} ith mode eigenvector
o natural frequency
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structure. Kung and Singh [7] have developed a new energy-based approach for predicting the vibration
and damping characteristics of a rectangular plate with multiple viscoelastic patches. Hu and Haung [8]
derived the governing equations for a general 3-layer viscoelastic structure with viscoelastic core. Kant and
Babu [9] have presented a finite element model using first-order and higher-order shear-deformable
models for the thermal buckling of skew fiber-reinforced composite and sandwich plates. Meunier and Shenoi
[10] introduced the dynamic constitutive material properties into the analytical model using elastic–viscoelastic
model. The governing differential equations are solved to obtain the natural frequencies and loss factors
of the composite sandwich plates including the frequency-dependent effects of the material parameters. Yu
and Huang [11] derived the governing equations for a 3-layer sandwich circular plate. Recently, Matsunaga
[12] has presented a two-dimensional higher-order deformation theory for thermal buckling of cross-ply
laminated composite and sandwich plates. From the literature it is evident that many authors have
considered the frequency-dependent characteristics of the viscoelastic materials presented in the structure.
But very few works deal with the temperature-dependent characteristics of the viscoelastic material [12].
It is clear that there has been no work reported on the thermal buckling and vibration of multi-layer
plates considering the temperature-dependent characteristic of viscoelastic material. Hence, the present study
aims at filling this gap by developing a finite element formulation for carrying out the thermal buckling and
vibration analysis of multi-layer sandwich plates. The present formulation for thermal buckling is an
extension of the formulation presented by Khatua and Cheung [2] for buckling under mechanical loading. The
temperature-dependent characteristics of complex shear modulus value of the viscoelastic core are accounted.
Since now stiffness matrix is temperature dependent, an iterative procedure has to be adopted for carrying
out thermal buckling analysis. Critical buckling temperature values are reported for C–C–C–C sandwich
plates. A parametric study is conducted with core thickness, and number of layers as a parameter. The
variation of natural frequency and loss factor with temperature is reported. Several interesting phenomena
like shifting of modes with temperature, decrease of membrane stiffness with the increase in core thickness
and increase in level of sandwiching have been observed. In the section to follow finite element formulation is
presented.
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2. Finite element formulation

The assumptions made in the finite element formulation are the following:
(1)
 the core is relatively soft and viscoelastic with temperature-dependent complex shear modulus
GðTÞ ¼ G�ðTÞð1þ iZðTÞÞ;
(2)
 the dissipation in the core is only due to transverse shear;

(3)
 the transverse shear in the stiff layers is neglected;

(4)
 the temperature rise in the core due to dissipation of the shear stress is neglected;

(5)
 steady-state temperature field is assumed throughout the analysis.
The current finite element formulation is based on the classical laminate theory. The formulation presented
in the work of Khatua and Cheung [1] has been extended to characterize the vibration and buckling behavior
of the viscoelastic sandwich plates under thermal environment. Even though the expressions for stiffness and
mass matrices are well known, they are presented for the sake of continuity.

Fig. 1 shows a rectangular multi-layer sandwich plate element. The degrees of freedom are fdjg ¼

fw yx yy u1 v1 . . . ui . . . vi un vngj for any node j. The array of nodal degrees of freedom is
given by

fdge ¼ fd1g fd2g fd3g fd4g
� �

. (1)

The displacement field within the element fw; ui; vig
T is related to the nodal degrees of freedom by the

following expression:

w

ui

vi

8><
>:

9>=
>; ¼ ½N�fdge, (2)

where [N] is the shape function matrix.
4 3

21

ith layer
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(ui)1
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ti

ti+1
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(vi)1

Fig. 1. Multi-layer sandwich plate element.
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The array of strains {e} is given by

f�g ¼ �
q2w
qx2

; �
q2w

qy2
; 2

q2w
qx qy

;
qu1

qx
;

qv1

qy
;

qu1

qy
þ

qv1

qx
; gxz1; gyz1; . . . ;

(

�
q2w
qx2

; �
q2w
qy2

; 2
q2w
qx qy

;
qui

qx
;

qvi

qy
;

qui

qy
þ

qvi

qx
; gxzj ; gyzj ; . . . ;

gxzðn�1Þ; gxzðn�1Þ; �
q2w
qx2

; �
q2w
qy2

; 2
q2w
qx qy

;
qun

qx
;

qvn

qy
;

qun

qy
þ

qvn

qx

)
. ð3Þ

The strains can be related to the nodal degrees of freedom by the following relation:

f�g ¼ ½B�fdge, (4)

where [B] is the strain displacement matrix.

2.1. Stiffness and mass matrices

The stiffness and mass matrices can be computed by the well known formulae given by [1]

½K �e ¼

Z b

�b

Z a

�a

½B�T½D�½B�dxdy, (5)

½M�e ¼

Z b

�b

Z a

�a

½N�T½P�½N�dxdy. (6)

Since the shear modulus of the core is complex, the element stiffness matrix [K]e is a complex matrix and can
be written as

½K �e ¼ ½KR�
e þ ½KI �

e. (7)

[KR]
e, [KI]

e are the real and imaginary parts of the stiffness matrix [K]e respectively. [D] is the property matrix
and [P] is the mass density matrix.

2.2. Thermal load vector and geometric stiffness matrix

The expression for thermal load vector is given by

½F th�
e ¼

Z b

�b

Z a

�a

½B�T½D�f�0gdxdy, (8)

where {e0} are the free expansion thermal strains given by

f�0g ¼ 0 0 0 ax1DT ay1DT 0 0 0 . . . ;
n

0 0 0 axiDT ayiDT 0 0 0 . . . ;

0 0 0 axnDT aynDT 0 0 0
o
. ð9Þ

axi, ayi are the coefficients of thermal expansions of the ith layer in x and y directions, respectively, and DT is
the temperature above the ambient. In the present work the two-dimensional temperature field in the plate is
calculated by using 2D rectangular finite elements over the plate.

The expression for nonlinear strains {e}L is given by

f�gL ¼
qw

qx

� �2

;
qw

qx

� �2

; . . . ; n times

( )
. (10)
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{e}L can be related to the nodal degrees of freedom as

f�gL ¼ ½Bg�fdge. (11)

The geometric stiffness matrix is given by

½Kg�
e ¼

Z b

�b

Z a

�a

½Bg�
T½s0�e½Bg�dxdy, (12)

where [Bg] is the nonlinear strain displacement matrix and [s0]
e is the matrix of initial stresses in the element.

Expressions for [Bg] and [s0]
e are given in the Appendix. For the other expressions refer to Refs. [1,2].

3. Validation

The present formulation is validated for the buckling and vibration behaviors with the results existing in
the literature. Since thermal buckling of multi-layer sandwich plates is not available in the literature,
Table 1

Critical buckling stresses in lb/in2 for all side simply supported (SS–SS–SS–SS) sandwich plates (the geometry and material properties are

given below)

Number of layers Ref. [3] 4� 4 Present number of elements

4� 4 6� 6 8� 8 10� 10

3 7225 7209 6984 6891 6834

5 8578 8459 8213 8100 8030

7 7613 7573 7351 7256 7197

3�layer case : a ¼ b ¼ 23:5 in; t1 ¼ t2 ¼ 0:021 in; h1 ¼ 0:181 in; Ex1 ¼ Ex2 ¼ Ey1 ¼ Ey2 ¼ 9:5� 106 lb=in2; Gxz1 ¼ Gyz1 ¼ 1:9� 103 lb=in2;
nx1 ¼ nx2 ¼ ny1 ¼ ny2 ¼ 0:25.
5�layer case : a ¼ b ¼ 100 in; t1 ¼ t2 ¼ t3 ¼ 0:025 in; h1 ¼ h2 ¼ 0:30 in; Ex1 ¼ Ex2 ¼ Ex3 ¼ Ey1 ¼ Ey2 ¼ Ey3 ¼ 30� 106 lb=in2; Gxz1 ¼

Gyz1 ¼ Gxz2 ¼ Gyz2 ¼ 1:9� 103 lb=in2; nx1 ¼ nx2 ¼ nx3 ¼ ny1 ¼ ny2 ¼ ny3 ¼ 0:25.
7�layer case : a ¼ b ¼ 100 in; t1 ¼ t2 ¼ t3 ¼ t4 ¼ 0:02 inh1 ¼ h2 ¼ h3 ¼ 0:30 in; Ex1 ¼ Ex2 ¼ Ex3 ¼ Ex4 ¼ Ey1 ¼ Ey2 ¼ Ey3 ¼ Ey4 ¼

30� 106 lb=in2; Gxz1 ¼ Gxz2 ¼ Gxz3 ¼ Gyz1 ¼ Gyz2 ¼ Gyz3 ¼ 1:9� 103 lb=in2; nx1 ¼ nx2 ¼ nx3 ¼ nx4 ¼ ny1 ¼ ny2 ¼ ny3 ¼ ny4 ¼ 0:25.

Table 2

Critical stresses in lb/in2 for a 3-layer C–C–C–C sandwich plate (dimensions and elastic properties are the same as in Table 1)

Stress state Ref. [3] 4� 4 Present number of elements

4� 4 6� 6 8� 8 10� 10

Uni-axial 17386 21704 18892 17683 17417 (16235*)

Bi-axial ðNxi=Nyi ¼ 0:5Þ 12252 14285 11904 11537 11421 (11362*)

*Series solution.

Table 3

Natural frequencies of a 5-layer SS–SS–SS–SS sandwich plate (the geometry and material properties are given below)

Modal m 1 2 1 3 2 3 4 1 2 4

Numbers n 1 1 2 1 2 2 1 3 3 2

Ref. [1] (5� 5) in quarter plate 19 38 60 69 78 109 115 128 145 153

Present (8� 8) 20 38 62 71 80 112 118 134 151 161

(10� 10) 20 38 61 69 79 110 113 131 148 153

a ¼ 72 in; b ¼ 48 in; t1 ¼ t2 ¼ t3 ¼ 0:011 in; h1 ¼ h2 ¼ 0:125 in; Ex1 ¼ Ex2 ¼ Ex3 ¼ Ey1 ¼ Ey2 ¼ Ey3 ¼ 107 lb=in2; Gxz1 ¼ Gxz2 ¼ 19:5�
103 lb=in2; Gyz1 ¼ Gyz2 ¼ 7:5� 103 lb=in2; nx1 ¼ nx2 ¼ nx3 ¼ ny1 ¼ ny2 ¼ ny3 ¼ 0:33; rs1 ¼ rs2 ¼ rs3 ¼ 259� 10�6 lb s2=in; rc1 ¼ rc2 ¼

11:4� 10�6 lb s2=in.
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the formulation is validated with the mechanical buckling results available in the literature. Table 1 compares
the critical buckling stresses for the simply supported sandwich plates with those in Ref. [3]. Comparison
shows that the results are in good agreement with those in Ref. [3].

Table 2 compares the critical buckling stresses for a 3-layer clamped sandwich plate. The uni-axial stress
state is generated by setting axi; nxi ¼ 0, i ¼ 1; 2. The bi-axial stress state is generated by setting
axi=axi ¼ 0:5; nxi ¼ 0, i ¼ 1; 2. Bucking analysis is made and the corresponding critical stresses in the plate
are cross verified with those reported in Ref. [3]. The results are in good agreement with the reported results.

Table 3 compares the natural frequencies of a 5-layer simply supported sandwich plate with the results
reported in the literature. The results are in excellent agreement with the reported values in Ref. [1].
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Fig. 2. Loss factors for SS–SS–SS–SS multi-layer sandwich plates: (a) 3-layer, (b) 5-layer, (c) 7-layer: a=b ¼ 1;
T=a ¼ 0:05; V ¼ 10rs=rc ¼ 2; Z ¼ 0:5.
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Fig. 2 compares the loss factor values of SS–SS–SS–SS multi-layer sandwich plates. The loss factor values
obtained with the present formulation are in good agreement with the results available in Ref. [4].

From the above comparison studies, correctness of the formulation and computer code developed has been
verified.

4. Results and discussion

4.1. Thermal buckling

The buckling temperatures of the sandwich plate can be found by solving the following eigenvalue problem:

½KR�
G þ l½Kg�

G ¼ 0, (13)

where ½KR�
G and ½Kg�

G are obtained after assembly; (refer to Eqs. (7) and (12)). The superscript G indicates
global matrices. When G� is a function of temperature, an iterative procedure has to be used to find the
buckling temperature as indicated in Fig. 3. The 1st mode buckling temperature is the value of temperature
T

1

2

3
4

5

�1

�1 = 1

T = Tb

Fig. 3. Iterative algorithm for finding buckling temperatures when G� is a function of temperature.

Table 4

Critical buckling temperatures of C–C–C–C sandwich plates subjected to constant temperature

Number of layers Critical buckling temperature (1C)

ts=tc ¼ 2 ts=tc ¼ 1 ts=tc ¼ 2=3

3 63 92 129

5 60 84 114

7 59 81 108

Table 5

Critical buckling temperatures of C–C–C–C sandwich plates subjected to linearly varying temperature

Number of layers Critical buckling temperature (1C)

ts=tc ¼ 2 ts=tc ¼ 1 ts=tc ¼ 2=3

3 95 153 223

5 89 137 196

7 87 130 184



ARTICLE IN PRESS
V. Pradeep, N. Ganesan / Journal of Sound and Vibration 310 (2008) 169–183176
which makes the first eigenvalue l1 one. The procedure starts with two initial guesses found by solving
Eq. (13), namely points 1 and 2 as shown in Fig. 3. Temperature T3, corresponding to l1 ¼ 1, is found by
linear interpolation or extrapolation using the points 1 and 2 and the improved guess 3 is found by re-
evaluating the value of l1 at the temperatureT3 by solving Eq. (13). Now 2 and 3 will be new guess points for
Table 7

First six modes of C–C–C–C sandwich plates at room temperature (the geometry and material parameters are indicated below)

Description Mode number 

Plate 1 2 3 4 65

3

/ 2 /1

/ 1 /1

/ 2 / 3

s c

s c

s c

Layer

t t

t t

t t

5 Layer

/ 2 /1
s c
t t

/ 1 /1
s c
t t

/ 2 / 3
s c
t t =

=

=

=
=
=

-

-

-

7

/ 2 /1

/ 1 /1

/ 2 / 3

s c

s c

s c

Layer

t t

t t

t t =
=

=

a ¼ 0:5m; b ¼ 0:5m; ts ¼ 4mm; G�; Z from Fig. 4; ambient temperature 30 1C.

Table 6

Natural frequencies of the C–C–C–C sandwich plates at room temperature

Number of layers Thickness ratio Frequency (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

3 ts=tc ¼ 2=1 227 459 459 663 817 822

ts=tc ¼ 1=1 293 580 580 825 1002 1010

ts=tc ¼ 2=3 348 675 675 948 1138 1148

5 ts=tc ¼ 2=1 214 437 437 543 543 637

ts=tc ¼ 1=1 270 541 541 541 541 645

ts=tc ¼ 2=3 316 539 539 624 624 642

7 ts=tc ¼ 2=1 208 386 386 421 421 460

ts=tc ¼ 1=1 257 385 385 459 513 513

ts=tc ¼ 2=3 298 385 385 458 564 586

a ¼ 0:5m; b ¼ 0:5m; ts ¼ 4mm; G�; Z from Fig: 4; ambient temperature 30 �C:
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the next iteration. The procedure is repeated by using the latest two guesses till the two guesses converge to the
buckling temperature Tb and l1 ¼ 1.

A C–C–C–C plate is analyzed for buckling behavior under two different temperature fields. Table 4 gives
the critical buckling temperature values for the multi-layer sandwich plates subjected to constant temperature
throughout. As expected with the increase in core thickness, buckling temperature increases. Progressive
sandwiching lessens the buckling temperature as shown in Table 4. Table 5 shows the critical temperature
values for a clamped plate subjected to linearly varying temperature field. Temperature is held constant (30 1C)
on one edge and the temperature of the other edge is varied till the bucking occurs. In this case by the word
buckling temperature, we mean the temperature to be specified on the other edge at which buckling occurs.
4.2. Evaluation of natural frequency and loss factor

For finding the natural frequency of the sandwich plates the following eigenvalue problem has to be solved:

½KR�
G þ o2½M�G ¼ 0, (14)

where o2 is the square of natural frequency. ½KR�
G and ½M�G are the real part of stiffness matrix and mass

matrix in a global sense (refer to Eqs. (6) and (7)). The modal loss factor Zi for any mode i can be found by
Table 8

Shift of modes with temperature case 5-layer, ts=tc ¼ 2=3

Description Mode number 

Temperature (°C 1 2 3 4 5 6 

30–55

55–85

85–110

)

a ¼ 0:5m; b ¼ 0:5m; ts ¼ 4mm; G�; Z from Fig: 4:
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Fig. 4. Variation of shear modulus and material loss factor values with temperature for EC 2216.
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using modal strain energy method by using the following equation:

Zi ¼
ffig

T½KI �
Gffig

ffig
Tð½KR�

G þ ½Kg�
GÞffig

, (15)

where ffig is the eigenvector corresponding to mode i.

4.3. Effect of core thickness and sandwiching configuration on mode shapes

Table 6 shows the first six natural frequencies of C–C–C–C multi-layer sandwich plates at room
temperature. The corresponding mode shapes are given in Table 7. For a 3-layer sandwich plate, all the first
six modes are predominantly bending modes. For a 5-layer plate with ts=tc ¼ 2=1, the first three modes are
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Fig. 5. Variation of frequency and loss factor with temperature for a 3-layer C–C–C–C sandwich plate subjected to constant temperature:

ðaÞ ts=tc ¼ 2=1; ðbÞ ts=tc ¼ 1=1; and ðcÞ ts=tc ¼ 2=3.
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predominantly bending modes. The 4th and 5th modes are pure membrane modes and the 6th mode is still a
bending mode. Membrane mode shapes are symbolically shown. Only the u displacements are shown in the
membrane modes. Of course the v displacement plots will also look the same. For a 5-layer plate with
ts=tc ¼ 1=1, all the modes are similar to the case of ts=tc ¼ 2=1, except that the 6th mode is a coupled mode
with predominantly membrane characteristics. For a 5-layer plate with ts=tc ¼ 2=3, the membrane modes
occur very much at the 2nd and 3rd positions, the 4th and 5th modes are bending and the 6th mode is a
coupled mode. For a 7-layer plate with ts=tc ¼ 2=1, the 1st mode is a bending mode, the 2nd and 3rd are pure
membrane modes, the 4th and 5th modes are bending modes and the 6th mode is a coupled mode. For a 7-
layer plate with ts=tc ¼ 1=1 and ts=tc ¼ 2=3, the coupled mode occupies the 4th position, and the 5th and 6th
positions are occupied by the bending modes. From Table 7 it can be seen that for a given core thickness, with
the increase in degree of sandwiching the membrane modes become predominant. This effect is more
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Fig. 6. Variation of frequency and loss factor with temperature for a 5-layer C–C–C–C sandwich plate subjected to constant temperature:

ðaÞ ts=tc ¼ 2=1; ðbÞ ts=tc ¼ 1=1; and ðcÞ ts=tc ¼ 2=3.



ARTICLE IN PRESS
V. Pradeep, N. Ganesan / Journal of Sound and Vibration 310 (2008) 169–183180
prominent at the high core thickness. For a given sandwich configuration, increase in core thickness increases
the bending natural frequencies to a notable degree. But the membrane frequencies will increase marginally.
This is to be expected as increase in core thickness considerably increases the bending stiffness. In contrast the
membrane frequency increases marginally similar to the axial vibration of a beam. For a given core thickness,
the 3-layer sandwich plate has the highest frequency, indicating that this configuration is stiffer than the
other ones.

4.4. Effect of temperature on mode shapes

It is observed that with the increase in temperature, the lowest frequency mode shapes get altered for the
5- and 7-layer configurations. To explain this phenomenon, a typical case of 5-layer plate with ts=tc ¼ 2=3
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Fig. 7. Variation of frequency and loss factor with temperature for a 7-layer C–C–C–C sandwich plate subjected to constant temperature:

ðaÞ ts=tc ¼ 2=1; ðbÞ ts=tc ¼ 1=1; and ðcÞ ts=tc ¼ 2=3.
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is considered. Table 8 shows the shift of the mode shapes with temperature. For the plate considered the room
temperature, modes will persist as lowest six modes up to 55 1C. In the range of 55–85 1C the positions of
membrane modes and bending modes get interchanged. Above 85 1C the 6th mode changes to bending mode
instead of being a coupled mode. With the increase in temperature the bending stiffness of the system will fall
because of the addition of geometric stiffness matrix, whereas the membrane stiffness is almost unaffected with
temperature. This is the reason that can be attributed to the change of mode shapes with temperature. Because
of this effect while plotting the variation of temperature versus frequency, care should be taken and the room
temperature modes have to be properly tracked over the temperature range of interest.
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Fig. 8. Variation of frequency and loss factor with temperature for a C–C–C–C sandwich plate subjected to linearly varying temperature
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4.5. Influence of temperature on frequency and loss factor

Fig. 4 shows the variation of shear modulus (real part G�) and material loss factor Z with temperature [13].
Figs. 5–7 show the variation of natural frequency and loss factor with temperature for a 3-, 5- and 7-layer
sandwich plates, respectively. The plates are clamped on all the four edges and are subjected to constant
temperature throughout the plate domain. The 1st mode frequency starts decreasing with temperature and
finally falls to zero at buckling temperature. The corresponding loss factor keeps increasing with temperature
and drastically increases near the buckling temperature. The frequency of all the bending modes tends to
decrease with temperature. The corresponding loss factor values follow a hill-shaped curve. The reason for this
is the overlapping of geometric stiffness effect and variation of material loss factor with temperature.
Referring to the expression for modal loss factor Zi (refer to Eq. (15)), the denominator of the expression will
go on decreasing with temperature due to the addition of geometric stiffness matrix. The numerator, since it
entirely depends on material loss factor, will vary in the same manner as the material loss factor does with
temperature. The influence of geometric stiffness matrix is felt more in the 1st mode. From Fig. 4 it can be seen
that the material loss factor has got a maximum value at around 40 1C. Correspondingly a maxima in loss
factor can be seen at around 40 1C from Figs. 5–7 for all the bending modes. The core thickness will always
increase the damping. There is a little influence of temperature on the membrane modes. Further, there is a
little contribution from the membrane modes to the damping of the system. Fig. 8 shows the variation of
frequency and loss factor of sandwich plates subjected to linearly varying temperature. One edge of the plate is
held at constant temperature. The variations of frequency and loss factor with the temperature of the other
edge are plotted.

Appendix

½Bg� ¼ fB1g; fB2g; . . . fBig; . . . fBng
� �T

,

fBig ¼ fA1g fA2g fA3g fA4g
� �

,

fAkg ¼ Nk1;x Nk2;x Nk3;x
..
.

2n zeros

� 	
,

where x indicates derivative with respect to x and Nki are the shape functions [1].

½s0�e ¼

½N�1

½N�2

. .
.

½N�i

. .
.

½N�n

2
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where ½N�i ¼
Nxi 0

0 Nyi
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